Analysis of variance and design of experiment-II - Study24x7

New to Study24X7 ?

139 followers

1 Learner

# Analysis of variance and design of experiment-II

Validity Unlimited All Level English

0.0 (0)
Free

Analysis of variance (ANOVA) is a collection of statistical models and their associated estimation procedures (such as the "variation" among and between groups) used to analyze the differences among group means in a sample. ANOVA was developed by statistician and evolutionary biologist Ronald Fisher. The ANOVA is based on the law of total variance, where the observed variance in a particular variable is partitioned into components attributable to different sources of variation. In its simplest form, ANOVA provides a statistical testof whether the population means of several groups are equal, and therefore generalizes the t-test to more than two groups. ANOVA is useful for comparing (testing) three or more group means for statistical significance.

• Total 10 Modules
• 38 Pdfs
• Published on 26 June, 2019

• Lecture1

9 pages
• Lecture2

10 pages
• Lecture3

10 pages
• Lecture4

11 pages
• Lecture5

8 pages
• Lecture6

11 pages
• Lecture7

9 pages
• Lecture8

8 pages

• Lecture-9

10 pages
• Lecture-10

6 pages
• Lecture-11

8 pages
• Lecture-12

8 pages
• Lecture-13

7 pages
• Lecture-14

8 pages

• Lecture15

11 pages
• Lecture16

12 pages
• Lecture17

10 pages
• Lecture18

9 pages

• Lecture19

9 pages
• Lecture20

8 pages
• Lecture21

11 pages

• Lecture22

9 pages
• Lecture23

11 pages

• Lecture24

9 pages
• Lecture25

11 pages
• Lecture26

11 pages
• Lecture27

8 pages
• Lecture28

9 pages

• Lecture29

10 pages
• Lecture30

10 pages
• Lecture31

11 pages

• Lecture33

9 pages
• Lecture34

9 pages
• Lecture35

9 pages
• Lecture36

9 pages

• Lecture37

12 pages
• Lecture38

11 pages

• Lecture39

23 pages

4.5 (3)

0.0 (0)

5.0 (1)

0.0 (0)

4.5 (12)

3.0 (1)

5.0 (1)

5.0 (1)

0.0 (0)

5.0 (1)

0.0 (0)

0.0 (0)

5.0 (2)

5.0 (1)

5.0 (2)

5.0 (2)

5.0 (5)

5.0 (10)

0.0 (0)

5.0 (4)

0.0 (0)

0.0 (0)

5.0 (2)

5.0 (1)

0.0 (0)